extension | φ:Q→Aut N | d | ρ | Label | ID |
C62⋊Dic3 = C62⋊Dic3 | φ: Dic3/C1 → Dic3 ⊆ Aut C62 | 24 | 12+ | C6^2:Dic3 | 432,743 |
C62⋊2Dic3 = C32×A4⋊C4 | φ: Dic3/C2 → S3 ⊆ Aut C62 | 108 | | C6^2:2Dic3 | 432,615 |
C62⋊3Dic3 = C62⋊3C12 | φ: Dic3/C2 → S3 ⊆ Aut C62 | 72 | | C6^2:3Dic3 | 432,166 |
C62⋊4Dic3 = C62⋊4Dic3 | φ: Dic3/C2 → S3 ⊆ Aut C62 | 72 | | C6^2:4Dic3 | 432,199 |
C62⋊5Dic3 = C62⋊5Dic3 | φ: Dic3/C2 → S3 ⊆ Aut C62 | 36 | 6- | C6^2:5Dic3 | 432,251 |
C62⋊6Dic3 = C62⋊6Dic3 | φ: Dic3/C2 → S3 ⊆ Aut C62 | 36 | 3 | C6^2:6Dic3 | 432,260 |
C62⋊7Dic3 = C22×C32⋊C12 | φ: Dic3/C2 → S3 ⊆ Aut C62 | 144 | | C6^2:7Dic3 | 432,376 |
C62⋊8Dic3 = C22×He3⋊3C4 | φ: Dic3/C2 → S3 ⊆ Aut C62 | 144 | | C6^2:8Dic3 | 432,398 |
C62⋊9Dic3 = C3×C6.7S4 | φ: Dic3/C2 → S3 ⊆ Aut C62 | 36 | 6 | C6^2:9Dic3 | 432,618 |
C62⋊10Dic3 = C62⋊10Dic3 | φ: Dic3/C2 → S3 ⊆ Aut C62 | 108 | | C6^2:10Dic3 | 432,621 |
C62⋊11Dic3 = C62⋊11Dic3 | φ: Dic3/C3 → C4 ⊆ Aut C62 | 24 | 4 | C6^2:11Dic3 | 432,641 |
C62⋊12Dic3 = C22×C33⋊C4 | φ: Dic3/C3 → C4 ⊆ Aut C62 | 48 | | C6^2:12Dic3 | 432,766 |
C62⋊13Dic3 = C32×C6.D4 | φ: Dic3/C6 → C2 ⊆ Aut C62 | 72 | | C6^2:13Dic3 | 432,479 |
C62⋊14Dic3 = C3×C62⋊5C4 | φ: Dic3/C6 → C2 ⊆ Aut C62 | 72 | | C6^2:14Dic3 | 432,495 |
C62⋊15Dic3 = C63.C2 | φ: Dic3/C6 → C2 ⊆ Aut C62 | 216 | | C6^2:15Dic3 | 432,511 |
C62⋊16Dic3 = C2×C6×C3⋊Dic3 | φ: Dic3/C6 → C2 ⊆ Aut C62 | 144 | | C6^2:16Dic3 | 432,718 |
C62⋊17Dic3 = C22×C33⋊5C4 | φ: Dic3/C6 → C2 ⊆ Aut C62 | 432 | | C6^2:17Dic3 | 432,728 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
C62.1Dic3 = C2×He3⋊3C8 | φ: Dic3/C2 → S3 ⊆ Aut C62 | 144 | | C6^2.1Dic3 | 432,136 |
C62.2Dic3 = He3⋊7M4(2) | φ: Dic3/C2 → S3 ⊆ Aut C62 | 72 | 6 | C6^2.2Dic3 | 432,137 |
C62.3Dic3 = C2×C9⋊C24 | φ: Dic3/C2 → S3 ⊆ Aut C62 | 144 | | C6^2.3Dic3 | 432,142 |
C62.4Dic3 = C36.C12 | φ: Dic3/C2 → S3 ⊆ Aut C62 | 72 | 6 | C6^2.4Dic3 | 432,143 |
C62.5Dic3 = C62.27D6 | φ: Dic3/C2 → S3 ⊆ Aut C62 | 72 | | C6^2.5Dic3 | 432,167 |
C62.6Dic3 = C2×He3⋊4C8 | φ: Dic3/C2 → S3 ⊆ Aut C62 | 144 | | C6^2.6Dic3 | 432,184 |
C62.7Dic3 = He3⋊8M4(2) | φ: Dic3/C2 → S3 ⊆ Aut C62 | 72 | 6 | C6^2.7Dic3 | 432,185 |
C62.8Dic3 = C62.Dic3 | φ: Dic3/C2 → S3 ⊆ Aut C62 | 36 | 6- | C6^2.8Dic3 | 432,249 |
C62.9Dic3 = C3×C6.S4 | φ: Dic3/C2 → S3 ⊆ Aut C62 | 36 | 6 | C6^2.9Dic3 | 432,250 |
C62.10Dic3 = C62.10Dic3 | φ: Dic3/C2 → S3 ⊆ Aut C62 | 108 | | C6^2.10Dic3 | 432,259 |
C62.11Dic3 = C22×C9⋊C12 | φ: Dic3/C2 → S3 ⊆ Aut C62 | 144 | | C6^2.11Dic3 | 432,378 |
C62.12Dic3 = C2×C33⋊4C8 | φ: Dic3/C3 → C4 ⊆ Aut C62 | 48 | | C6^2.12Dic3 | 432,639 |
C62.13Dic3 = C33⋊12M4(2) | φ: Dic3/C3 → C4 ⊆ Aut C62 | 24 | 4 | C6^2.13Dic3 | 432,640 |
C62.14Dic3 = C32×C4.Dic3 | φ: Dic3/C6 → C2 ⊆ Aut C62 | 72 | | C6^2.14Dic3 | 432,470 |
C62.15Dic3 = C6×C9⋊C8 | φ: Dic3/C6 → C2 ⊆ Aut C62 | 144 | | C6^2.15Dic3 | 432,124 |
C62.16Dic3 = C3×C4.Dic9 | φ: Dic3/C6 → C2 ⊆ Aut C62 | 72 | 2 | C6^2.16Dic3 | 432,125 |
C62.17Dic3 = C3×C18.D4 | φ: Dic3/C6 → C2 ⊆ Aut C62 | 72 | | C6^2.17Dic3 | 432,164 |
C62.18Dic3 = C2×C36.S3 | φ: Dic3/C6 → C2 ⊆ Aut C62 | 432 | | C6^2.18Dic3 | 432,178 |
C62.19Dic3 = C36.69D6 | φ: Dic3/C6 → C2 ⊆ Aut C62 | 216 | | C6^2.19Dic3 | 432,179 |
C62.20Dic3 = C62.127D6 | φ: Dic3/C6 → C2 ⊆ Aut C62 | 216 | | C6^2.20Dic3 | 432,198 |
C62.21Dic3 = C2×C6×Dic9 | φ: Dic3/C6 → C2 ⊆ Aut C62 | 144 | | C6^2.21Dic3 | 432,372 |
C62.22Dic3 = C22×C9⋊Dic3 | φ: Dic3/C6 → C2 ⊆ Aut C62 | 432 | | C6^2.22Dic3 | 432,396 |
C62.23Dic3 = C6×C32⋊4C8 | φ: Dic3/C6 → C2 ⊆ Aut C62 | 144 | | C6^2.23Dic3 | 432,485 |
C62.24Dic3 = C3×C12.58D6 | φ: Dic3/C6 → C2 ⊆ Aut C62 | 72 | | C6^2.24Dic3 | 432,486 |
C62.25Dic3 = C2×C33⋊7C8 | φ: Dic3/C6 → C2 ⊆ Aut C62 | 432 | | C6^2.25Dic3 | 432,501 |
C62.26Dic3 = C33⋊18M4(2) | φ: Dic3/C6 → C2 ⊆ Aut C62 | 216 | | C6^2.26Dic3 | 432,502 |
C62.27Dic3 = C3×C6×C3⋊C8 | central extension (φ=1) | 144 | | C6^2.27Dic3 | 432,469 |