Extensions 1→N→G→Q→1 with N=C62 and Q=Dic3

Direct product G=N×Q with N=C62 and Q=Dic3
dρLabelID
Dic3×C62144Dic3xC6^2432,708

Semidirect products G=N:Q with N=C62 and Q=Dic3
extensionφ:Q→Aut NdρLabelID
C62⋊Dic3 = C62⋊Dic3φ: Dic3/C1Dic3 ⊆ Aut C622412+C6^2:Dic3432,743
C622Dic3 = C32×A4⋊C4φ: Dic3/C2S3 ⊆ Aut C62108C6^2:2Dic3432,615
C623Dic3 = C623C12φ: Dic3/C2S3 ⊆ Aut C6272C6^2:3Dic3432,166
C624Dic3 = C624Dic3φ: Dic3/C2S3 ⊆ Aut C6272C6^2:4Dic3432,199
C625Dic3 = C625Dic3φ: Dic3/C2S3 ⊆ Aut C62366-C6^2:5Dic3432,251
C626Dic3 = C626Dic3φ: Dic3/C2S3 ⊆ Aut C62363C6^2:6Dic3432,260
C627Dic3 = C22×C32⋊C12φ: Dic3/C2S3 ⊆ Aut C62144C6^2:7Dic3432,376
C628Dic3 = C22×He33C4φ: Dic3/C2S3 ⊆ Aut C62144C6^2:8Dic3432,398
C629Dic3 = C3×C6.7S4φ: Dic3/C2S3 ⊆ Aut C62366C6^2:9Dic3432,618
C6210Dic3 = C6210Dic3φ: Dic3/C2S3 ⊆ Aut C62108C6^2:10Dic3432,621
C6211Dic3 = C6211Dic3φ: Dic3/C3C4 ⊆ Aut C62244C6^2:11Dic3432,641
C6212Dic3 = C22×C33⋊C4φ: Dic3/C3C4 ⊆ Aut C6248C6^2:12Dic3432,766
C6213Dic3 = C32×C6.D4φ: Dic3/C6C2 ⊆ Aut C6272C6^2:13Dic3432,479
C6214Dic3 = C3×C625C4φ: Dic3/C6C2 ⊆ Aut C6272C6^2:14Dic3432,495
C6215Dic3 = C63.C2φ: Dic3/C6C2 ⊆ Aut C62216C6^2:15Dic3432,511
C6216Dic3 = C2×C6×C3⋊Dic3φ: Dic3/C6C2 ⊆ Aut C62144C6^2:16Dic3432,718
C6217Dic3 = C22×C335C4φ: Dic3/C6C2 ⊆ Aut C62432C6^2:17Dic3432,728

Non-split extensions G=N.Q with N=C62 and Q=Dic3
extensionφ:Q→Aut NdρLabelID
C62.1Dic3 = C2×He33C8φ: Dic3/C2S3 ⊆ Aut C62144C6^2.1Dic3432,136
C62.2Dic3 = He37M4(2)φ: Dic3/C2S3 ⊆ Aut C62726C6^2.2Dic3432,137
C62.3Dic3 = C2×C9⋊C24φ: Dic3/C2S3 ⊆ Aut C62144C6^2.3Dic3432,142
C62.4Dic3 = C36.C12φ: Dic3/C2S3 ⊆ Aut C62726C6^2.4Dic3432,143
C62.5Dic3 = C62.27D6φ: Dic3/C2S3 ⊆ Aut C6272C6^2.5Dic3432,167
C62.6Dic3 = C2×He34C8φ: Dic3/C2S3 ⊆ Aut C62144C6^2.6Dic3432,184
C62.7Dic3 = He38M4(2)φ: Dic3/C2S3 ⊆ Aut C62726C6^2.7Dic3432,185
C62.8Dic3 = C62.Dic3φ: Dic3/C2S3 ⊆ Aut C62366-C6^2.8Dic3432,249
C62.9Dic3 = C3×C6.S4φ: Dic3/C2S3 ⊆ Aut C62366C6^2.9Dic3432,250
C62.10Dic3 = C62.10Dic3φ: Dic3/C2S3 ⊆ Aut C62108C6^2.10Dic3432,259
C62.11Dic3 = C22×C9⋊C12φ: Dic3/C2S3 ⊆ Aut C62144C6^2.11Dic3432,378
C62.12Dic3 = C2×C334C8φ: Dic3/C3C4 ⊆ Aut C6248C6^2.12Dic3432,639
C62.13Dic3 = C3312M4(2)φ: Dic3/C3C4 ⊆ Aut C62244C6^2.13Dic3432,640
C62.14Dic3 = C32×C4.Dic3φ: Dic3/C6C2 ⊆ Aut C6272C6^2.14Dic3432,470
C62.15Dic3 = C6×C9⋊C8φ: Dic3/C6C2 ⊆ Aut C62144C6^2.15Dic3432,124
C62.16Dic3 = C3×C4.Dic9φ: Dic3/C6C2 ⊆ Aut C62722C6^2.16Dic3432,125
C62.17Dic3 = C3×C18.D4φ: Dic3/C6C2 ⊆ Aut C6272C6^2.17Dic3432,164
C62.18Dic3 = C2×C36.S3φ: Dic3/C6C2 ⊆ Aut C62432C6^2.18Dic3432,178
C62.19Dic3 = C36.69D6φ: Dic3/C6C2 ⊆ Aut C62216C6^2.19Dic3432,179
C62.20Dic3 = C62.127D6φ: Dic3/C6C2 ⊆ Aut C62216C6^2.20Dic3432,198
C62.21Dic3 = C2×C6×Dic9φ: Dic3/C6C2 ⊆ Aut C62144C6^2.21Dic3432,372
C62.22Dic3 = C22×C9⋊Dic3φ: Dic3/C6C2 ⊆ Aut C62432C6^2.22Dic3432,396
C62.23Dic3 = C6×C324C8φ: Dic3/C6C2 ⊆ Aut C62144C6^2.23Dic3432,485
C62.24Dic3 = C3×C12.58D6φ: Dic3/C6C2 ⊆ Aut C6272C6^2.24Dic3432,486
C62.25Dic3 = C2×C337C8φ: Dic3/C6C2 ⊆ Aut C62432C6^2.25Dic3432,501
C62.26Dic3 = C3318M4(2)φ: Dic3/C6C2 ⊆ Aut C62216C6^2.26Dic3432,502
C62.27Dic3 = C3×C6×C3⋊C8central extension (φ=1)144C6^2.27Dic3432,469

׿
×
𝔽